Mark scheme - Chromatography and Qualitative Analysis

		Answer/Indicative content	Marks	Guidance
1		F/aldehyde AND Tollens' (reagent) AND Silver (mirror/precipitate/ppt/solid) G/alkene/C=C AND Bromine/Br2 AND goes colourless/decolourised \checkmark G/ketone AND 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate \checkmark G/ketone AND Tollens' (reagent) AND no silver mirror/no change/no reaction \checkmark	4 $(\mathrm{AO} 2.3$) (AO3.3) $(\mathrm{AO} 3.3$) (AO3.3)	IGNORE use of $2,4-$ DNP with F ALLOW ammoniacal silver nitrate $\mathbf{O R} \mathrm{Ag}^{+} / \mathrm{NH}_{3}$ ALLOW black ppt OR grey ppt ALLOW bromine water/ $\mathrm{Br}_{2}(\mathrm{aq})$ ALLOW errors in spelling for 2,4-DNP ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate ALLOW ammoniacal silver nitrate $\mathbf{O R} \mathrm{Ag}^{+} / \mathrm{NH}_{3}$ ALLOW black ppt OR grey ppt ALLOW alterative approach using acidified potassium dichromate for tests with F and/or G , with correct observations, alongside use of 2,4DNP Examiner's Comments Candidates who found this question difficult often did not give a response that would identify all three of the functional groups (aldehyde, ketone and alkene). The use of Tollens' in identifying aldehydes was well demonstrated, however no reaction with Tollens' was less well demonstrated as a result for ketones.
		Total	4	
2	a	 $\mathrm{H}^{+(a q)}$ $\left(\mathrm{CH}_{3} \mathrm{~K}_{2} \mathrm{CHOH} / \mathrm{H}_{2} \mathrm{SO}_{4}\right.$	$\begin{gathered} 4(\mathrm{AO} \\ 2.5 \times 4) \end{gathered}$	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW protonation of NH_{2} group in reaction with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ i.e. ALL structures must be based on serine

6.3.1 Chromatography and Qualitative Analysis

For reaction with excess $\mathrm{CH}_{3} \mathrm{COCl}$,
IGNORE reaction of COOH to form an acid anhydride

ALLOW 1 mark for

(both NH and OH groups reacted but acyl chloride instead of COOH)
OR

(both NH and OH groups reacted but H missing from α C atom)

OR

(NH group reacted correctly but rest of serine unchanged)
OR

(OH group reacted correctly but rest of serine unchanged)

Examiner's Comments

This question focused on the reactions of the different functional groups in serine. Candidates are familiar with these reactions and most candidates scored at least two marks. These were achieved by the formation of the ammonium ion by reaction with H^{+}and the formation of the ester from $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$. Determining the organic product from the reaction of serine with excess $\mathrm{CH}_{3} \mathrm{COCl}$

6.3.1 Chromatography and Qualitative Analysis

		$M \text { (amino acid) } \quad=\frac{5.766}{0.0440}=131\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \checkmark$ Amino acid $=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH} / l$ leucine AND working to show $\mathrm{R}=57$ to justify choice OR evidence to show M_{r} leucine $=131$ to justify choice $\sqrt{ }$	$\begin{aligned} & \text { (AO } \\ & 3.2) \end{aligned}$	Note: evidence may be shown with table Examiner's Comments Candidates are confident in tackling titration analysis and the majority of responses were well structured. Most candidates used the results to determine the $M r$ of the unknown amino acid and hence identify it as leucine. However, other approaches were also seen and these were given full credit if correct. A common error was incorrect scaling to determine the amount of amino acid used to make the $250 \mathrm{~cm}^{3}$ solution. A significant number of responses simply multiplied the number of moles of acid by ten rather than using a factor of 250/21.30. Error carried forward marks were available and so the majority of candidates scored 3 or 4 marks.
	b i	Rf value in range $0.33-0.35 \checkmark$	$\begin{gathered} \text { 1(AO } \\ 1.1) \end{gathered}$	ALLOW 2 SF or more. But ignore digits after second sig fig ALLOW 0.3 for 0.33..... Examiner's Comments Candidates are familiar with the calculation of R_{f} values and this question was answered very well. Although almost all candidates showed appropriate working as part of their response some candidates gave the final answer to only one significant figure and did not receive credit. Candidates were expected to give their answer to a number of significant figures appropriate to the measurements they had made, so a minimum of two significant figures was expected. The mark scheme allowed a response within a range, rather than a specific value, and most candidates scored in this part.
	ii	gly(cine) \checkmark Amino acid matches (leu(cine) and) glycine in Solvent W AND Amino acid matches (ala(nine) and) glycine in Solvent X \checkmark	$\begin{gathered} 2(\mathrm{AO} \\ 2.3 \times 2) \end{gathered}$	ALLOW glycine has the same/similar $R f$ as the unknown in both solvents/chromatograms ALLOW suitable alternatives for R_{f} e.g. moves same distance
		Total	11	
3		FIRST CHECK ANSWER ON ANSWER LINE IF answer $=7.5 \times 10^{-4}$ award 2 marks $[K]$ in $\mathrm{mol} \mathrm{dm}^{-3}$ $\frac{9.13 \times 10^{-2}}{166}=5.50 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$	2	If there is an alternative answer, Apply ECF Alternative method $[\mathrm{K}]$ in $\mathrm{g} \mathrm{dm}^{-3}$ with peak area of 5.9 $9.13 \times 10^{-2} \times \frac{5.9}{4.3}$ OR $9.13 \times 10^{-2} \times 1.37$

6.3.1 Chromatography and Qualitative Analysis

				Examiners were encouraged by the number of good responses to this problem solving question. Most candidates achieved at least one mark in this part, often from a correct structure of J. Although many candidates deduced that the R group for both \mathbf{L} and \mathbf{M} consisted of 3 C atoms and 7 H atoms, only the highest ability candidates were able to join these correctly. A small but significant number of responses showed R groups that involved O atoms, despite the prompt that the R represented an alkyl group. Candidates are advised to read questions carefully.
		Total	5	
4	i	Bromine/ Br_{2} AND goes colourless/decolourised \checkmark	1	Note: both reagent and observation are required ALLOW bromine water/ $\mathrm{Br}_{2}(\mathrm{aq})$ Examiner's Comments Almost all candidates were able to correctly describe the use of bromine as a test for an unsaturated chain.
	ii	Tollens' (reagent) AND Silver (mirror/precipitate/ppt/solid) \checkmark	1	Note: both reagent and observation are required for the mark. ALLOW ammoniacal silver nitrate $\mathbf{O R} \mathrm{Ag}^{+} / \mathrm{NH}_{3}$ ALLOW black ppt OR grey ppt Examiner's Comments Almost all candidates were able to correctly describe the use of Tollens' reagent as a test for an aldehyde functional group.
	$\begin{aligned} & \text { ii } \\ & i \end{aligned}$	(Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate \checkmark Take melting point (of crystals) Compare to known values/database \checkmark	3	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate Mark second and third points independently of response for first marking point DO NOT ALLOW $2^{\text {nd }}$ and $3^{\text {rd }}$ marks for taking and comparing boiling points OR chromatograms Examiner's Comments The use of 2,4-dinitrophenylhydrazine as a test for the carbonyl group is well known by candidates at this level. The majority of the cohort correctly

6.3.1 Chromatography and Qualitative Analysis

$\left.\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { carbonyl } \\ \text { AND } \\ \text { Tollens' reagent observation (so not an aldehyde) } \checkmark\end{array} & \begin{array}{l}\text { ALLOW "aldehyde or ketone" in place of carbonyl }\end{array} \\ \text { Examiner Comments } \\ \text { Many candidates were able to suggest that the } \\ \text { compound contained a ketone but found it more } \\ \text { difficult to indicate the presence of phenol. } \\ \text { Approximately 20\% of the entry obtained all three } \\ \text { marks. When explainng the presence of the ketone } \\ \text { some failed to indicate that the 2,4-DNP test } \\ \text { indicated that the compond must lontain a } \\ \text { carbonyl and just focused on the lack of reactivity } \\ \text { with Tollens'. Answers suggesting the molecule } \\ \text { contained a ketone as no reaction was observed } \\ \text { with Tollens' did not gain credit when no reference } \\ \text { to carbonyl was seen. Those who recognised the } \\ \text { presence of a phenol explained that the only acidic } \\ \text { functional group that does not react with sodium } \\ \text { carbonate is a phenol. }\end{array}\right\}$

6.3.1 Chromatography and Qualitative Analysis

	Silver (mirror) \downarrow Equation $\mathrm{RCHO}+[\mathrm{O}] \rightarrow \mathrm{RCOOH} \checkmark$		ALLOW ammoniacal silver nitrate $\mathbf{O R} \mathrm{Ag}^{+} / \mathrm{NH}_{3}$ ALLOW $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ OR acidified (potassium/sodium) dichromate AND Orange to green (this would identify the aldehyde from the carboxylic acid, ketone and esters)
b	2,4-dinitrophenylhydrazine AND Orange/yellow/red precipitate \checkmark	1	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
c	```\(\mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\) \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}\) \(\mathrm{CH}_{3} \mathrm{COONa} \sqrt{ }\) Rest of equation correct \(\checkmark\) OR \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{3}+\mathrm{NaOH} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOONa}+\) \(\mathrm{CH}_{3} \mathrm{OH}\) \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOONa} \checkmark\) Rest of equation correct \(\checkmark\)```	2	Note: the hydrolysis of either ester may be given ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae of products (question requires structures of products to be shown)
	Reagent and observation $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ OR acidified (potassium/sodium) dichromate AND Orange to green (with $\mathrm{CH}_{3} \mathrm{OH}$) \checkmark Equation $\mathrm{CH}_{3} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{CH}_{3} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \checkmark$	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae (question requires structures of organic compounds to be shown)
	${ }^{13} \mathrm{C}$ NMR (1 mark) (It is) not possible to identify (the esters) with ${ }^{13} \mathrm{C}$ NMR AND (both) spectra would contain four peaks (with similar chemical shifts) \downarrow ${ }^{1} \mathrm{H}$ NMR (2 marks)	3	ALLOW 'same number of peaks' in place of 'four peaks'

6.3.1 Chromatography and Qualitative Analysis

		(It is) possible to identify (the esters) with ${ }^{1} \mathrm{H}$ NMR (${ }^{1} \mathrm{H}$ NMR spectrum of) $\mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}$ has a singlet/peak between 2.0-3.0 (ppm) (${ }^{1} \mathrm{H}$ NMR spectrum of) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{3}$ has a singlet/peak between 3.0-4.3 (ppm) All three correct statements $\checkmark \checkmark$ Any two correct statements \checkmark		ALLOW any value or range of values within 2.0-3.0 ALLOW any value or range of values within 3.0-4.3
	d	Possible structures for ketone (2 marks) All three correct $\checkmark \checkmark$ Any two correct \checkmark Aldehyde (3 marks) Peak at (δ) 1.2 shows HC-R AND No H on adjacent C atom as peak is singlet \checkmark Peak at (ס) 9.6 shows $\mathrm{H}-\mathrm{C}=\mathrm{O}$ AND No H on adjacent C atom as peak is singlet \checkmark OR (2,2-)dimethylpropanal \checkmark	5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names of ketones
		Total	17	
8		Leucine AND valine \checkmark	1	

		Rf values would be larger \checkmark (amino acids) are more soluble (in more polar solvent so would travel further up the plate) \checkmark	2	
		Total	3	
9	a	 Curly arrow from OH^{-}to $\mathrm{C}(\delta+) \checkmark$ Dipole correct AND curly arrow from $\mathrm{C}=\mathrm{O}$ bond to O(ठ-) \checkmark	2	First curly arrow must come from either a lone pair on O or negative charge on O Examiner's Comments Some candidates lost a mark for the incorrect positioning of the curly arrow from the hydroxide ion. The mark scheme specifies that it should start at either the lone pair on the oxygen atom or the negative change on the oxygen atom.
	b	Measure distance moved by spot/distance moved by solvent $\sqrt{ }$	2	ALLOW attempt at calculation of R_{f} value using distances measured on the chromatogram IGNORE explanation of how chromatography works
		Compare (R_{f}) value with data book values/known values \checkmark Two amino acids have the same/similar R_{f} value OR similar adsorption OR move the same/similar distance \checkmark	1	ALLOW One spot contains two amino acids ALLOW Two amino acids have not separated IGNORE relative solubility ALLOW two of the amino acids have similar structures Examiner's Comments This question discriminated well with relatively few candidates able to score all three marks. Some candidates attempted to explain how the technique separates components between a mobile phase and a stationary phase which was not required by the question. There was some confusion with gas chromatography and retention times. Vague answers about all amino acids having similar structures did not score the final marking point to explain why only two spots appeared on the chromatogram.

c	i	The $\mathbf{p H}$ at which the amino acid exists as a zwitterion \checkmark QWC: zwitterion spelled correctly in the correct context	1	DO NOT ALLOW PH/ph ALLOW zwitter ion Examiner's Comments This definition had been learned by the majority of candidates.
	ii		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous Two COO^{-}groups are required in the structure ALLOW $-\mathrm{COO}^{-} \mathrm{Na}^{+}$OR - COONa ALLOW delocalised carboxylate ALLOW DO NOT ALLOW -COO-Na OR -O-Na (covalent bond) Examiner's Comments Generally well answered but structures with only one carboxylate group were quite common and some candidates showed aspartic acid being protonated at high pH .
		M1 structure M2 correct structure has three chiral centres	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW tripeptide with the 3 amino acids in any order ALLOW cyclic tripeptide Isoleucine has two chiral centres, aspartic acid has one chiral centre and glycine has none. ALL three correct for one mark ALLOW chiral centres correctly identified if the three amino acids are part of a polypeptide chain Examiner's Comments

6.3.1 Chromatography and Qualitative Analysis

				A more challenging question with relatively few candidates able to show the position of all three chiral centres on a correct tripeptide structure. Most candidates identified the chiral centres in the amino acid backbone of aspartic acid and isoleucine and realised that glycine was not chiral, but many missed the second chiral centre in isoleucine.
		Total	9	
$\begin{aligned} & 1 \\ & 0 \end{aligned}$		(Relative) solubility (in stationary phase) \checkmark	1	ALLOW how well the compound dissolves IGNORE retention time AND partition DO NOT ALLOW adsorption OR absorption Examiner's Comments The analysis of mixtures using gas chromatography was not well understood. The specification states that a liquid stationary phase separates by relative solubility and many incorrect answers focussed on the adsorption of molecules onto the solid beads rather the relative solubility of molecules in the liquid polymer that coated the beads. No credit was given to answers that stated that the separation produced different retention times.
		Compound B AND $\mathrm{M}^{+} /$molecular ion peak $($at $\mathrm{m} / \mathrm{z})=124$	1	ALLOW Mr = 124 IGNORE compound B because $m / z=124$ ALLOW $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}{ }^{+}=124 \mathrm{OR} \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}=124$ ALLOW peak at ($\mathrm{m} / \mathrm{z}=$) 109 due to $\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{O}^{+}$ ALLOW peak at ($\mathrm{m} / \mathrm{z}=$) 109 due to loss of CH_{3} IGNORE reference to other peaks in the spectrum Examiner's Comments This question was well answered. The majority of candidates focussed on the different molar masses of the compounds and many referred to the M^{+} peak or molecular ion peak of compound \mathbf{B}.
	ii	Compound (B) is less soluble in the stationary phase / liquid	1	ORA Answer refers to the first compound to emerge from the column ALLOW compound (B) is more soluble in mobile phase / gas ALLOW compound interacts less with stationary phase / liquid OR compound interacts more with mobile phase / gas IGNORE compound adsorbs less IGNORE compound is not very soluble (comparison needed) IGNORE volatility OR reactivity Examiner's Comments

| | | Relatively few creditworthy responses were seen
 here. The specification describes chromatography
 as an analytical technique that separates
 components in a mixture between a mobile phase
 and a stationary phase. Many candidates referred
 to differences in solubility or the strength of
 interactions without linking this to a particular phase |
| :--- | :--- | :--- | :--- | :--- | :--- |
| in the column. | | |

6.3.1 Chromatography and Qualitative Analysis

6.3.1 Chromatography and Qualitative Analysis

			The diagram is basic and unstructured. Any mention of purification steps is limited to generic term, e.g. 'drying', without relevant detail. 0 marks No response or no response worthy of credit.		
	b		Lack of (further) effervescence	1	ALLOW fizzing / bubbling stops
	c		Take samples from reaction mixture at regular intervals Spot / run on a TLC plate, alongside cyclohexanol (and cyclohexanone) controls	2	ALLOW "frequent" for "regular" ALLOW measure / compare R_{f} value to cyclohexanol IGNORE reference to solvent or visualising chemicals / UV
	d		React (sample of distillate) with 2,4dinitrophenylhydrazine recrystallise AND determine the melting point Compare melting point to known / library value for cyclohexanone (derivative)	3	ALLOW (2,4-)DNPH / Brady's reagent
			Total	12	
1 3		i	Pure aspirin and 2-hydroxybenzoic acid correct Impure aspirin with 2 spots in line with aspirin and 2hydroxybenzoic acid spots AND 2-hydroxybenzoic acid spot fainter than aspirin spot	2	Check measurements on diagram using online measuring tool. Distance from baseline to top of spot for aspirin $=70-80 \%$ of baseline \rightarrow solvent front Distance from baseline to top of spot for aspirin $=25-35 \%$ of baseline \rightarrow solvent front
		ii	Melting point range between $130-140^{\circ} \mathrm{C}$ AND Range $\geq 2^{\circ} \mathrm{C}$	1	Range that starts <138 and finishes ≤ 140
			Total	3	
4	a		F-K clearly identified	6	ANNOTATE ANSWER WITH TICKS AND CROSSES
			Compound F:		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

6.3.1 Chromatography and Qualitative Analysis

